When you install openCV, openCV samples folder also gets installed. The samples will be present in your InstallationDirectory/samples/C. For me it's present in OpenCV-2.1.0/samples/c.This folder contains the sample codes of many good openCV programmes that can be used for a wide variety of purposes. One more thing is that, it also contains the compiled object files along with the source code for each programme. The programme , we will be looking is find_obj.cpp and the compiled code will be with the name find_obj. This programme uses SURF to do an object detection. The original code, written by Liu, is modified by me to give the below code. Note that the comments made by me, start with Dileep:
/* * A Demo to OpenCV Implementation of SURF * Further Information Refer to "SURF: Speed-Up Robust Feature" * Author: Liu Liu * liuliu.1987+opencv@gmail.com * Modified by : http://www.opencvuser.blogspot.com * Modifying Author : Dileep Kumar Kotha */ #include <cv.h> #include <highgui.h> #include <ctype.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <vector> using namespace std; static double dis=0;//For calculating the average descriptor distance // define whether to use approximate nearest-neighbor search //#define USE_FLANN IplImage *image = 0; double compareSURFDescriptors( const float* d1, const float* d2, double best, int length ) { double total_cost = 0; assert( length % 4 == 0 ); for( int i = 0; i < length; i += 4 ) { double t0 = d1[i] - d2[i]; double t1 = d1[i+1] - d2[i+1]; double t2 = d1[i+2] - d2[i+2]; double t3 = d1[i+3] - d2[i+3]; total_cost += t0*t0 + t1*t1 + t2*t2 + t3*t3; /* We are sending a total cost, that's slightly greater or smaller than the best */ if( total_cost > best ) break; } return total_cost; } int naiveNearestNeighbor( const float* vec, int laplacian, const CvSeq* model_keypoints, const CvSeq* model_descriptors ) { int length = (int)(model_descriptors->elem_size/sizeof(float)); int i, neighbor = -1; double d, dist1 = 1e6, dist2 = 1e6; CvSeqReader reader, kreader; cvStartReadSeq( model_keypoints, &kreader, 0 ); cvStartReadSeq( model_descriptors, &reader, 0 ); for( i = 0; i < model_descriptors->total; i++ ) { const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; const float* mvec = (const float*)reader.ptr; CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); if( laplacian != kp->laplacian ) continue; d = compareSURFDescriptors( vec, mvec, dist2, length ); if( d < dist1 ) { dist2 = dist1; dist1 = d; neighbor = i; } else if ( d < dist2 ) dist2 = d; } dis=dis+dist1; if ( dist1 < 0.6*dist2 ) return neighbor; return -1; } void findPairs( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, vector<int>& ptpairs ) { int i; CvSeqReader reader, kreader; cvStartReadSeq( objectKeypoints, &kreader ); cvStartReadSeq( objectDescriptors, &reader ); ptpairs.clear(); for( i = 0; i < objectDescriptors->total; i++ ) { const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; const float* descriptor = (const float*)reader.ptr; CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); int nearest_neighbor = naiveNearestNeighbor( descriptor, kp->laplacian, imageKeypoints, imageDescriptors); if( nearest_neighbor >= 0 ) { ptpairs.push_back(i); ptpairs.push_back(nearest_neighbor); } } printf("\n%lf\n",(dis/objectDescriptors->total));////Dileep:Here's where I am outputting the distance between the images /*Dileep: If you are using this for recognition, write this distance to a file along with the name of the image you are matching against. After doing this for several images, you can then sort them in ascending order to find the best possible match - the one with the smallest distance. Here, I am outputting the distance to stdout */ } ////Dileep:I am commenting the below one since it's of flann method and what ever the method we choose to find distance, the result is the same /* void flannFindPairs( const CvSeq*, const CvSeq* objectDescriptors, const CvSeq*, const CvSeq* imageDescriptors, vector<int>& ptpairs ) { int length = (int)(objectDescriptors->elem_size/sizeof(float)); cv::Mat m_object(objectDescriptors->total, length, CV_32F); cv::Mat m_image(imageDescriptors->total, length, CV_32F); // copy descriptors CvSeqReader obj_reader; float* obj_ptr = m_object.ptr<float>(0); cvStartReadSeq( objectDescriptors, &obj_reader ); for(int i = 0; i < objectDescriptors->total; i++ ) { const float* descriptor = (const float*)obj_reader.ptr; CV_NEXT_SEQ_ELEM( obj_reader.seq->elem_size, obj_reader ); memcpy(obj_ptr, descriptor, length*sizeof(float)); obj_ptr += length; } CvSeqReader img_reader; float* img_ptr = m_image.ptr<float>(0); cvStartReadSeq( imageDescriptors, &img_reader ); for(int i = 0; i < imageDescriptors->total; i++ ) { const float* descriptor = (const float*)img_reader.ptr; CV_NEXT_SEQ_ELEM( img_reader.seq->elem_size, img_reader ); memcpy(img_ptr, descriptor, length*sizeof(float)); img_ptr += length; } // find nearest neighbors using FLANN cv::Mat m_indices(objectDescriptors->total, 2, CV_32S); cv::Mat m_dists(objectDescriptors->total, 2, CV_32F); cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4)); // using 4 randomized kdtrees flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked int* indices_ptr = m_indices.ptr<int>(0); float* dists_ptr = m_dists.ptr<float>(0); for (int i=0;i<m_indices.rows;++i) { if (dists_ptr[2*i]<0.6*dists_ptr[2*i+1]) { ptpairs.push_back(i); ptpairs.push_back(indices_ptr[2*i]); } } } // a rough implementation for object location int locatePlanarObject( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, const CvPoint src_corners[4], CvPoint dst_corners[4] ) { double h[9]; CvMat _h = cvMat(3, 3, CV_64F, h); vector<int> ptpairs; vector<CvPoint2D32f> pt1, pt2; CvMat _pt1, _pt2; int i, n; #ifdef USE_FLANN flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #else findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #endif n = ptpairs.size()/2; if( n < 4 ) return 0; pt1.resize(n); pt2.resize(n); for( i = 0; i < n; i++ ) { pt1[i] = ((CvSURFPoint*)cvGetSeqElem(objectKeypoints,ptpairs[i*2]))->pt; pt2[i] = ((CvSURFPoint*)cvGetSeqElem(imageKeypoints,ptpairs[i*2+1]))->pt; } _pt1 = cvMat(1, n, CV_32FC2, &pt1[0] ); _pt2 = cvMat(1, n, CV_32FC2, &pt2[0] ); if( !cvFindHomography( &_pt1, &_pt2, &_h, CV_RANSAC, 5 )) return 0; for( i = 0; i < 4; i++ ) { double x = src_corners[i].x, y = src_corners[i].y; double Z = 1./(h[6]*x + h[7]*y + h[8]); double X = (h[0]*x + h[1]*y + h[2])*Z; double Y = (h[3]*x + h[4]*y + h[5])*Z; dst_corners[i] = cvPoint(cvRound(X), cvRound(Y)); } return 1; } */ int main(int argc, char** argv) { const char* object_filename = argc == 3 ? argv[1] : "box.png"; const char* scene_filename = argc == 3 ? argv[2] : "box_in_scene.png"; CvMemStorage* storage = cvCreateMemStorage(0); cvNamedWindow("Object", 1); cvNamedWindow("Object Correspond", 1); static CvScalar colors[] = { {{0,0,255}}, {{0,128,255}}, {{0,255,255}}, {{0,255,0}}, {{255,128,0}}, {{255,255,0}}, {{255,0,0}}, {{255,0,255}}, {{255,255,255}} }; IplImage* object = cvLoadImage( object_filename, CV_LOAD_IMAGE_GRAYSCALE ); IplImage* image = cvLoadImage( scene_filename, CV_LOAD_IMAGE_GRAYSCALE ); if( !object || !image ) { fprintf( stderr, "Can not load %s and/or %s\n" "Usage: find_obj [<object_filename> <scene_filename>]\n", object_filename, scene_filename ); exit(-1); } IplImage* object_color = cvCreateImage(cvGetSize(object), 8, 3); cvCvtColor( object, object_color, CV_GRAY2BGR ); CvSeq *objectKeypoints = 0, *objectDescriptors = 0; CvSeq *imageKeypoints = 0, *imageDescriptors = 0; int i; CvSURFParams params = cvSURFParams(500, 1); double tt = (double)cvGetTickCount(); cvExtractSURF( object, 0, &objectKeypoints, &objectDescriptors, storage, params ); printf("Object Descriptors: %d\n", objectDescriptors->total); cvExtractSURF( image, 0, &imageKeypoints, &imageDescriptors, storage, params ); printf("Image Descriptors: %d\n", imageDescriptors->total); tt = (double)cvGetTickCount() - tt; printf( "Extraction time = %gms\n", tt/(cvGetTickFrequency()*1000.)); CvPoint src_corners[4] = {{0,0}, {object->width,0}, {object->width, object->height}, {0, object->height}}; CvPoint dst_corners[4]; IplImage* correspond = cvCreateImage( cvSize(image->width, object->height+image->height), 8, 1 ); cvSetImageROI( correspond, cvRect( 0, 0, object->width, object->height ) ); cvCopy( object, correspond ); cvSetImageROI( correspond, cvRect( 0, object->height, correspond->width, correspond->height ) ); cvCopy( image, correspond ); cvResetImageROI( correspond ); #ifdef USE_FLANN printf("Using approximate nearest neighbor search\n"); #endif /* if( locatePlanarObject( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, src_corners, dst_corners )) { for( i = 0; i < 4; i++ ) { CvPoint r1 = dst_corners[i%4]; CvPoint r2 = dst_corners[(i+1)%4]; cvLine( correspond, cvPoint(r1.x, r1.y+object->height ), cvPoint(r2.x, r2.y+object->height ), colors[8] ); } } */ vector<int> ptpairs; #ifdef USE_FLANN flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #else findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #endif ////Dileep:It is used to draw the the lines and rectangles in the windows that display images. If you want just the distance, you can comment the whole ////below code for( i = 0; i < (int)ptpairs.size(); i += 2 ) { CvSURFPoint* r1 = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, ptpairs[i] ); CvSURFPoint* r2 = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, ptpairs[i+1] ); cvLine( correspond, cvPointFrom32f(r1->pt), cvPoint(cvRound(r2->pt.x), cvRound(r2->pt.y+object->height)), colors[8] ); } cvShowImage( "Object Correspond", correspond ); for( i = 0; i < objectKeypoints->total; i++ ) { CvSURFPoint* r = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, i ); CvPoint center; int radius; center.x = cvRound(r->pt.x); center.y = cvRound(r->pt.y); radius = cvRound(r->size*1.2/9.*2); cvCircle( object_color, center, radius, colors[0], 1, 8, 0 ); } cvShowImage( "Object", object_color ); cvWaitKey(0); //cvSaveImage("Object_1.png",correspond); //cvSaveImage("Object_2.png",object_color); cvDestroyWindow("Object"); cvDestroyWindow("Object SURF"); cvDestroyWindow("Object Correspond"); return 0; }
./find_obj
Otherwise, replace it with a.out. Also, copy the two images in the samples folder named box.png and box_in_scene.png into the folder where you run the above command.
Now for ./find_obj Since we are not supplying arguements, it will take the default box.png and box_in_scene.png and tries to find the first object inside the second object. The below figure appears.
What's actually happening here is object detection. But I included a "dis" variable and also printing it to standard ouput, so that you will also know the average distance of all the descriptors. If you want, you can keep two photographs of the same person with different facial expressions in the same folder and supply them as arg1 and arg2 (in which case you will get distance as zero, ofcourse :P)
./findobj arg1 arg2
If we keep on changing the second arguement(the image we are supplying as arg2), we can actually use it for recognition. Then the one with the least distance is the best possible match for the first argument (the image we are supplying as arg1). In the next post, I will strip all the unnecessary components of this code and make this usable for recognition. You can try to do it yourself.